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Abstract Globally, invasive plant-fueled wildfires

have tremendous environmental, economical, and

societal impacts, and the frequencies of wildfires and

plant invasions are on an upward trend globally.

Identifying which plant species tend to increase the

frequency or severity of wildfire is important to help

manage their impacts. We developed a screening

system to identify introduced plant species that are

likely to increase wildfire risk, using the Hawaiian

Islands to test the system and illustrate how the system

can be applied to inform management decisions.

Expert-based fire risk scores derived from field

experiences with 49 invasive species in Hawai0i were
used to train a machine learning model that predicts

expert fire risk scores from among 21 plant traits

obtained from literature and databases. The model

revealed that just four variables can identify species

categorized as higher fire risk by experts with 90%

accuracy, while low risk species were identified with

79% accuracy. We then used the predictive model to

screen[ 140 recently naturalized plants in Hawai0i to
illustrate how the screening tool can be applied. The

screening tool identified a managebly small set of

species (6% of naturalizations in the last * 10 years)

that are likely to pose a high fire risk and can be

targeted for eradication or containment to reduce

future wildfire risks. Because the screening system

uses general plant traits that are likely relevant to fire

risk in drylands around the world, it can likely be

applied with minimal modification to other regions

where invasive plants pose potential fire risks.

Keywords Screening system � Wildfire � Invasive
plant � Random forest � Hawai0i

Background

Globally, uncontrolled wildland fires have major

impacts on human health (Reid et al. 2016), soil

stability (Shakesby 2011), and rare plant and ecosys-

tem conservation (DLNR 2003) among many other

impacts. The size and intensity of wildfires has been

on an upward trend globally and is projected to

increase as temperature, rainfall, and other climatic

patterns are altered by climate change (Settele et al.

2014; Williams et al. 2019). In many areas, especially

throughout the tropics and subtropics, biomass from

invasive plants comprises a major component of the

fuel that drives wildfires (Smith and Tunison 1992;

D’Antonio and Vitousek 1992; Fusco et al. 2019).

New plant introductions are continuing around the
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world, and similar or increased rates of introduction

and plant naturalization are likely to continue in the

future (Seebens et al. 2017; Seebens et al. 2021).

Characterizing the fire risk of alien plants is a pressing

need in order to help resource managers anticipate

how novel alien plant invasions may alter wildfire risk

and threaten natural resource conservation and other

human interests. We define plants with high fire risk as

those which can modify fuels across a landscape in a

manner that increases the risk of wildfires with

undesirable impacts.

Plant flammability (including ignitability, sustain-

ability, combustibility, and consumability) has previ-

ously been assessed via a variety of experimental

methods such as chemical assays of plant tissue

(Broido and Nelson 1964), calorimetry (Madrigal

et al. 2013; Simpson et al. 2016), plant functional trait

analysis (Santacruz-Garcı́a et al. 2019), and small

scale (Dimitrakopoulos and Papaioannou 2001; Gan-

teaume et al. 2013) or twig scale burn tests (Jau-

reguiberry et al. 2011; Wyse et al. 2016, 2018; Alam

et al. 2020). These methods require large amounts of

plant material and specialized equipment, especially

for the most accurate methods (Alam et al. 2020). If

wildfire risk of plants can be assessed via information

available from existing literature and data, such an

approach would allow easier identification of high risk

species before new alien plant species arrive or when

they are discovered in a region or site, allowing

managers or policy makers to make informed deci-

sions about prohibiting introductions, eradicating, or

controlling these high risk species.

Identifying plant species of concern via weed risk

assessments (WRA) has been shown to be a valuable

tool for predicting which introduced plant species may

become invasive pests (Daehler and Carino 2000;

Dawson et al. 2009; Gassó et al. 2010; McClay et al.

2010; Morais et al. 2017; He et al. 2018). Current

WRA frameworks such as the widely adopted Aus-

tralianWRA (Pheloung et al. 1999) assess a species by

examining characteristics relating to the plant’s biol-

ogy and behavior elsewhere in order to predict

whether a plant is likely to be a weed. Previous work

has used geographic modeling to identify regions

which are more or less vulnerable to invasion by

species known to promote fire (Link et al. 2006;

Chambers et al. 2019). However, geographically

independent risk assessment systems have not been

developed to specifically predict an introduced plant’s

risk of promoting wildfires.

Hawai0i has the largest percentage area burned by

wildfire among all US states due to a combination of

historical land use practices and the spread of invasive

plants (Ellsworth et al. 2014; Trauernicht et al. 2015).

Hawai0i also is continuing to experience new plant

naturalizations at an average rate of about 10 new

species per year over the last decade (Evenhuis 2020);

it is likely that some of these newly naturalized species

may go on to further modify fire regimes and pose

additional wildfire threats. This combination of factors

makes Hawai0i an ideal and practical case study for

developing and testing a generalizable, literature-

based screening system for alien plants which can

increase wildfire risk.

Expert rankings of plant flammability (generally

defined as the ability of plant material to ignite and

sustain a fire) have previously been shown to be highly

correlated with experimentally measured plant

flammability (Wyse et al. 2016). In particular, local

experts who have first-hand knowledge of particular

species’ behavior in the field can provide a reliable

assessment of species’ behavior, and thus expert

ratings could be used to assess fire risk of established

invaders in a region. However, obtaining an expert-

based assessment requires identifying one or more

appropriate individuals who are willing to provide the

assessment. Furthermore, local experts are unlikely to

have first-hand fire-related experience with new plant

introductions and naturalizations. Therefore, a litera-

ture-based screening system that has been calibrated

based on expert ratings can be more broadly imple-

mented for screening, relative to a strict reliance on

expert ratings.

Our objective was to develop a literature-based

screening system that can be used to assess the wildfire

risk posed by introduced plants. Previous work has

shown that machine learning techniques can be used to

develop efficient and accurate screening systems by

identifying information that is most useful for predic-

tion. For example, the Australian WRA (Pheloung

et al. 1999) uses 49 questions, but machine learning

methods have found that it could be reduced to as few

as 4 questions while yielding similar predictive ability

to the full assessment (Caley and Kuhnert 2006;

Weber et al. 2009). We employed a similar approach

using conditional random forests (Strobl et al. 2008), a

type of random forest algorithm (Breiman 2001), to
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identify the most important plant traits among 21

literature-derived variables in order to construct a

screening system to identify introduced plants that

pose high wildfire risk, as indicated by expert ratings.

We then demonstrate application of this approach to

predict wildfire risk by screening recently arriving or

naturalizing plants in Hawai0i, for which no first-hand

experience is available from local experts.

Methods

Expert survey of invasive plant fire risk

In order to obtain expert-based ratings for Hawai0i,
natural resource managers were asked to rate the

wildfire risk of 49 naturalized plants in Hawai0i based
on their personal experience and observations of the

species specifically in Hawai0i. An invitation to

complete an online survey was circulated among

several email listservers targeting resource managers,

wildfire managers, and invasive plant managers in

Hawai0i. Email invitations were also sent directly to 32

individuals known to have experience with invasive

plants and wildfires across Hawai0i. The survey ran for
1 month starting October 19, 2020. The survey asked

each respondent to rate wildfire risk in Hawai0i posed
by each of 49 naturalized plant species using one of the

following 5 categories: unknown, no concern, low

risk, medium risk, and high risk. To document the

backgrounds of each expert, the survey also asked

which island(s) the respondent is most familiar with as

well as what type of resources they manage and how

they obtained their experience.

The 49 species chosen for the survey were selected

by C. Daehler from the list of naturalized plants in

Hawai0i (Imada 2019) and included mostly recognized

weeds of natural areas (Motooka et al. 2003), focusing

on those found in dry or seasonally dry environments,

with many life forms of plants included. The taxon-

omy used here follows Imada (2019). In two cases,

genus names were used on the expert survey as

Hawai0i has two naturalized species in those genera

that are morphologically and ecologically similar

(Cortaderia spp. = C. jubata ? C. selloana and

Cryptostegia spp. = C. madagascariensis ? C.

grandiflora).

Expert-based fire risk score

In order to establish initial coarse fire risk categories of

potential use for informing management decisions,

two risk categories were defined, low risk and high/

medium risk. A plant was categorized as low risk if

more than half of its ratings were ‘‘low risk’’ or ‘‘no

concern’’ (not counting blank or ‘‘unknown’’

responses). Otherwise, the plant was categorized as

high/medium risk. A quantitative risk score was also

calculated for each species by expressing the survey

responses as a proportion as recommended by Harpe

(2015) with slight modification by weighing a medium

risk rating by 50% relative to a high risk rating. The

following formula was used: (number of high

responses ? the number of medium responses * 0.5)

/ the total number of responses. Survey responses

which were left blank or answered as ‘‘unknown’’ for a

given species were not counted in the denominator.

Assembling literature-based species information

Previous work has identified various functional,

chemical, or ecological traits that may be associated

with increased plant flammability (mostly ignitabil-

ity), such as small leaf size, stem branching pattern

(Alam 2019), thin leaves or high specific leaf area

(Grootemaat 2015; Alam et al. 2020), high horizontal

continuity of fuels across a landscape (Brooks et al.

2004), dead leaf retention (Bowman et al. 2014),

tissues which contain high quantities of oils or resins

(Brooks et al. 2004), and growth habit (Cui et al. 2020)

to name a few. White and Zipperer (2010) along with

Bowman et al. (2014) also provided more general

plant traits associated with fire promotion. Although

these previous findings were not specific to invasive

plants, we nevertheless expect that invasive or weedy

plants possessing these traits may pose high wildfire

risks. We used this prior research on plant flammabil-

ity and trait trends in fire-prone vegetation to identify a

list of 21 traits to be collected from literature and

databases (Table 1).

Species information was assembled from literature

and database searches as well as photos (full protocol

detailed in Online Resource 1). All information was

collected without access to the plant itself, under the

assumption that a screener wanting to apply the

screening system may not have convenient access to

live material. Any information derived from field
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Table 1 Full set of literature-derived plant traits tested for potential inclusion in a screening system used to predict wildfire risk: For

the details of how these traits were evaluated, see Online Resource 1

Trait Description Reason Values

Vine Is the plant a vine? The growth form of a plant is broadly correlated with

its fuel characteristics (Cui et al. 2020)

Yes, no

Woody Is the plant woody? Yes, no

Herbaceous Is the plant herbaceous (not forming significant woody

tissue)?

Yes, no

Graminoid Is the plant in one of the following families: Poaceae,

Cyperaceae, Typhaceae, or Juncaceae?

Yes, no

Average

height

Height of plant, median value between reported min

and max height

Heights of grasses have been correlated with

flammability (Jardine 2017)

Continuous

Leaf

thickness

Thickness of the photosynthetic organs of the plant,

even if they are not true leaves

Thinner leaves burn more quickly and take less

energy to ignite (Grootemaat 2015; Alam 2019)

Thin/chartaceous,

thick/leathery,

succulent/water

filled

SLA Specific leaf area of dry leaves Continuous

Leaf or

Leaflet

Area

Approximate area of the smallest leaf division Greater leaf surface area has been implicated to high

flammability (Alam 2019)

Continuous

Fine standing

debris

Does the plant retain large quantities of fine dead

material elevated off the ground?

Fine standing dead material is typically dry and easy

to ignite (Bowman et al. 2014)

Yes, no, no data

Monocultures Is the plant capable of forming monocultures across

the landscape?

Plants which occur at high density can modify fuel

characteristics more than those which occur at low

density (White and Zipperer 2010)

Yes, no

Stand density How dense is the plant capable of getting? Sparse, dense, no

data

Vegetatitive

horizontal

continuity

Does a plant spread vegetatively by rooting, stolons, or

runners in such a way that individual genets form a

single clone is capable of spreading fire across a

landscape?

Plants which sprawl across the landscape can spread

fire quickly (Brooks et al. 2004)

High, low, no data

Leaf litter How much litter is produced by the plant? A buildup of leaf litter can spread fuel across a

landscape (Burton et al. 2020)

High/medium, low,

no data

Native

habitat fire

proneness

In any part of the plant’s native range is its habitat

described as fire prone due to natural or human

caused fires?

There is a positive correlation between habitat fire

proneness and plant flammability (Cui et al. 2020)

Yes, no, no data

Fire

promoting

native

Does the species act as a major fuel source, increase

fire severity, frequency, or modify fuel bed

characteristics within its native range?

Plants which have a history of flammability in one

area may be flammable in other areas

Yes, no

Fire

promoting

invader

elsewhere

Same as fire promoting native but within the species

introduced range

Yes, no

Reported

flammable

Is the species described as being flammable, being a

major wildfire fuel, or high fire risk? This mainly

refers to fuels with high ignitability

High, low, no data

Regenerates

after fire

Does the plant regrow after fire by any means? This

includes resprouters, reseeders, and recruiters which

dispersed into the area within approximately one

year post fire

Many plants which have evolved flammability have

also evolved the ability to regenerate after fire

(Mutch 1970)

Yes, no, no data

Promoted By

fire

Does the plant increase in abundance after a fire? Yes, no, no data

Flammable

compounds

Does the plant contain high quantities of flammable

oils or resins which make the tissues more flammable

or lower the ignition temperature?

These increase tissue flammability (Brooks et al.

2004)

Yes, no

Congeneric

relative is

flammable

Does a plant in the same genus meet the reported

flammable criteria?

Flammability is a phylogenetically conserved trait

(Cui et al. 2020). This has also been useful as a

predictor in WRA (e.g. Weber et al. 2009)

Yes, no
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studies in Hawai0i was not used for the literature-based
species assessments. Trait data were assembled for all

species ranked by experts, as well as for the set of 142

species reported as newly naturalized or potentially

naturalizing in Hawai0i between 2010 and 2019

(Kelsey Brock pers. comm.).

To designate trait data for Cortaderia spp. and

Cryptostegia spp. each species was evaluated sepa-

rately, and then literature-based data from both species

in each genus were combined to create a composite

species, using the most extreme (most likely to

promote fire) trait value from the two species.

Random forest modeling

A random forest based model was chosen to predict

wildfire risk from the literature survey data for several

reasons; it handles both categorical and quantitative

data, it handles interactions between predictors well, it

is very robust to overfitting, and can provide impor-

tance values for predictor variables (Breiman 2001).

Specifically, conditional random forest (cforest; Strobl

et al. 2008) was chosen, which is a variant of the

traditional random forest that uses a forest of condi-

tional inference trees (Strobl et al. 2008). Cforest

provides unbiased variable splitting during tree growth

which gives an advantage when using both categorical

and continuous variables in the same model as well as

providing more accurate variable importance metrics

(Strobl et al. 2009).

All code and statistics were run in R (R Core Team

2021), and the party package (Strobl et al. 2008) was

used for the cforest models. To compare models and

run cross-validation caret (Kuhn 2020) was used,

ggplot2 (Wickham 2016) was used to create figues,

sqldf (Grothendieck 2017) was used for manipulating

data.

For categorical plant trait variables, missing values

were treated as their own attributes (Twala et al. 2008;

Josse et al. 2019) as being unable to find data during

the literature search was not truly random. For the

missing quantitative values in the training data (only

SLA), the missing values were imputed using the

na.roughfix function from the randomForest package

(Liaw and Wiener 2002).

All models were trained as regression models using

the quantitative expert-based risk score as the response

variable and the literature-based traits as predictor

variables. Themtry hyperparameter was optimized for

each model by selecting the model with the lowest

root-mean-square error (RMSE). Each model was run

using leave one out cross-validation (LOOCV), and

the RMSE and the area under the receiver operator

characteristic (AUC) were calculated. To assess

variable importance, a conditional variable impor-

tance metric was used as it is able to identify important

predictors among correlated variables more accurately

than random forest (Strobl et al. 2009). The varImp

function in the party package was used for this after a

cforest model was trained on the data.

The model complexity was reduced by eliminating

predictor variables to assess whether predictive suc-

cess can be maintained with fewer literature-based

variables. Predictor variables were eliminated one at a

time, starting with those with the lowest importance

and ascending the list until the model performance

began to decline as determined by the RMSE value

reported from the cross-validation. After the RMSE

value began to drop, the final model was trained using

only the remaining, most important, predictors. The

AUC score for the final model was generated by leave-

pair-out cross-validation as recommended by Airola

et al. (2009) using the nlpred package (Benkeser

2020).

The sensitivity and specificity of the final model

were approximated using the predicted scores from

each of the 49 LOOCV runs and whether the species

was ranked by experts as low or high/medium risk.

These sensitivity and specificity values based on

LOOCV are approximate, as the small size of our

training dataset (49 species) did not allow partitioning

of the data into separate training and evaluation

datasets.

The final model was then used to predict fire risk

scores for the 142 recently naturalized and potentially

naturalized species in Hawai0i. As the final cforest

model is a regression model and outputs a numeric

score, a threshold value can be chosen to separate

species into categories, such as low and high fire risk.

We define a species with a score below this threshold

as ‘‘low risk’’ and species above it as ‘‘higher risk’’ for

potential management action.

Results

Fifty experts responded to the wildfire risk survey

resulting in an average of 35 ratings for each species
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with a standard deviation of ± 7.7. The minimum

number of responses received for a species was 17.

One respondent ranked all species as either high or

medium fire risk and was a clear outlier, this response

was removed resulting in a total of 49 expert responses

used in this analysis. Respondents self-reported that

their experiences with wildfire and invasive plants in

Hawai0i derived from their expertise as land managers

(59%), researchers (16%), field technicians or con-

tractors (15%), naturalists (6%), and educators or

community liaisons (4%). 63% of respondents desig-

nated themselves as natural resource managers, 25%

as natural and cultural resource managers, and 12%

did not list themselves as directly managing any

resources. Respondents obtained their experiences

from across all of the seven main Hawaiian islands

with the exception of Ni‘ihau, which is a smaller,

privately owned island.

Fire risk scores for the 49 species surveyed ranged

from 0 to 0.98 with an approximately continuous

variation between the highest and lowest scores

(Fig. 1). The cforest model revealed that the most

important predictor variables of expert rankings of

wildfire risk are Reported Flammable, Graminoid,

Congeneric Relative is Flammable, and Fire Promot-

ing Invader Elsewhere (Fig. 2). Only the four vari-

ables previously listed were used to train the final

cforest model used for prediction, as removing the

other 17 variables did not substantially decrease the

model’s performance. Using the full dataset of 21

variables, the model had an RMSE of 0.184 and an

AUC of 0.903. In contrast, the model using only the

four most important predictor variables had an RMSE

of 0.178 and AUC of 0.881. From hereon, we refer to

the final trained cforest model as the screening system.

Using a threshold value of 0.34 to separate low risk

and higher risk species, the screening system had a

90% sensitivity (true positive rate) and 79% specificity

(true negative rate). As the cforest model is determin-

istic and has only 4 input variables and 24 unique

combinations of inputs, these were tabulated in Table 2

to allow the screening system to be used without

having to run the cforest model or any other code.

After assessing all recently naturalized and poten-

tially naturalized species in Hawai0i, 94% were

categorized as low fire risk, while 8 of 142 (6%) were

categorized as higher risk, to be considered for

management action (Table 3). Species which were

ranked as low fire risk are included in Online Resource

2. We also present the species’ fire risk scores along

with corresponding literature-based information and

whether they regenerate after fire, or are promoted by

fire, as these data could be used in combination with

the fire risk score to inform management decisions.

Assessing each species for only the four literature-

based variables required for the simplified screening

system took an average of 35 min with a standard

deviation of ± 15 min and a maximum time of

83 min.

Discussion

We developed a literature-based screening system for

predicting wildfire risk of alien plants. The literature-

based assessment scores had a high predictive ability,

correctly identifying 90% of plants considered to be a

high fire risk. The screening system is easy to

complete, requiring only literature-based answers to

four questions, and can typically be completed for a

plant species in an hour or less. The assessment

questions are not location-specific and we expect the

screening system can be applied with little or no

modification in other fire-prone regions of the world.

Threshold values for low/higher risk

To inform management decisions, the screening

system separates plants into two categories: low risk

and higher risk. The low risk category was calibrated

such that most experts agreed these plants were of low

or no concern as contributors to wildfires. The

threshold of 0.34 used to separate the low risk and

higher risk species in Table 2 was chosen as it was

desired that the screening system should have a higher

sensitivity (true positive rate for higher risk species)

than specificity in accordance with the precautionary

principle. Thus, the 0.34 threshold is conservative in

placing species in the low risk category. However,

cFig. 1 Expert-based fire risk scores of each species assessed in

the land manager survey. The score is the proportion of the

respondents who ranked the plant as high fire risk plus � of the

respondents who ranked it medium risk out of the total number

of respondents for each species. Species that had ratings of High

orMedium by the majority of experts, were categorized as High/

Medium risk (black bars); other species were categorized as low

risk (gray bars)
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depending on goals, different threshold values could

be chosen to get an even higher sensitivity (true

positive rate) at the cost of a lower specificity (a higher

false positive rate). The relationship between sensi-

tivity and specificity is given in Online Resource 3.

Analysis of plant traits

Somewhat unsurprisingly, our model determined that

the most important variable for predicting whether a

species will pose a high wildfire risk in Hawai0i is
whether it has been reported as flammable somewhere

else (Fig. 2). Previous work in the field of invasion

ecology has also found that the best way to predict

whether a plant will display a complex and emergent

trait such as invasiveness (or in our case fire risk) in a

new area is simply to ask whether it or a closely related

relative displays that trait somewhere else (Daehler

and Strong 1993; Scott and Panetta 1993; Mack 1996;

Lockwood et al. 2001). When similar tree-based

machine learning techniques have been used to reduce

the number of variables in a weed risk assessment,

plant behavior elsewhere (i.e. ‘‘weed elsewhere’’ and

‘‘congeneric weed‘‘) also appeared in the reduced

models (Reichard and Hamilton 1997; Caley and

Kuhnert 2006; Weber et al. 2009).

Various fundamental biological traits thought to

underlie fire risk were not identified as the most

important traits in our model with emergent traits such

as Reported Flammable showing the most importance

(Fig. 2). However, when the model was run using the

full suite of predictor variables except Reported

Flammable, Congeneric Relative is Flammable, Gra-

minoid, and Fire Promoting Invader Elsewhere, this

modified model still has substantial predictive skill

with a RMSE of 0.224 an AUC of 0.83. This indicates

that a predictive model for fire risk can be developed

from the other more fundamental traits, albeit less

effectively than from the emergent traits. The relative

importance rankings of variables left in this model

were generally similar to those variables’ importance

in the full model (Fig. 2), with the two most important

Fig. 2 Importance values of various wildfire risk predictor variables as determined by a conditional random forest model when trained

on the expert fire risk scores. The increase in model accuracy is in units of Mean Standard Error (MSE)
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Table 2 All possible combinations of inputs to the reduced

random forests model used as a screening system, and their

corresponding scores. A species scoring[ 0.34 (italic scores)

is considered a higher fire risk, while scores\ 0.34 are

categorized as posing low wildfire risk

Reported flammable Congeneric relative is flammable Fire promoting invader elsewhere Graminoid Score

High No No No 0.50

High No No Yes 0.70

High No Yes No 0.50

High No Yes Yes 0.70

High Yes No No 0.52

High Yes No Yes 0.72

High Yes Yes No 0.53

High Yes Yes Yes 0.72

Low No No No 0.25

Low No No Yes 0.32

Low No Yes No 0.25

Low No Yes Yes 0.33

Low Yes No No 0.30

Low Yes No Yes 0.38

Low Yes Yes No 0.31

Low Yes Yes Yes 0.38

No data No No No 0.16

No Data No No Yes 0.25

No data No Yes No 0.17

No data No Yes Yes 0.25

No data Yes No No 0.22

No data Yes No Yes 0.31

No data Yes Yes No 0.23

No data Yes Yes Yes 0.31

Table 3 Species identified as higher risk (scoring[ 0.34)

from among 142 recently naturalized plants in Hawai0i, as well
as their trait values used to obtain the score. Whether the plant

regenerates after fire and is promoted by fire (increase in

population post fire) is also included in the table, as this

information may be useful in determining whether a species

may develop or integrate into a fire feedback loop

Species Risk

Score

Graminoid Fire promoting

invader elsewhere

Reported

flammable

Congeneric relative

is flammable

Regenerates

after fire

Promoted

by fire

Disakisperma dubia
(Leptochloa dubia)

0.70 Yes No High No No data No data

Eucalyptus cinerea 0.52 No No High Yes Yes No data

Eucalyptus goniocalyx 0.52 No No High Yes Yes No data

Banksia marginata 0.52 No No High Yes Yes No

Gutierrezia sarothrae 0.52 No No High Yes Yes Yes

Chromolaena odorata 0.50 No Yes High No Yes No

Cirsium arvense 0.50 No Yes High No Yes Yes

Pachira aquatica 0.50 No No High No No data No data
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predictors being Leaf Litter and Promoted by Fire,

both of which are correlated with increasing fire risk.

Amount of litter produced was identified by the full

model as the fifth most important variable, and the

most important variable in the modified model above

despite the leaf or leaflet size and leaf thickness

variables both having very low importance (Fig. 2).

Other work has shown that leaf size and leaf thickness

directly affect the flammability (ignitability and

sustainability) of litter (Engber and Varner 2012;

Cornwell et al. 2015; Grootemaat 2015; Burton et al.

2020). However, these variables do not predict the

quantity of litter produced which may ultimately be

more important than leaf size and thickness. The leaf

litter variable may also be acting as a proxy for habitat

moisture, as dry habitats where leaf litter can accu-

mulate tend to be more flammable than moist habitats

where leaf litter quickly decays (Riutta et al. 2012).

The Promoted by Fire trait has the sixth highest

importance in the full model and the second in the

modified model. Although we see no obvious inherent

link between fire risk and a plant being promoted by

fire, these traits are generally correlated for grasses

that are part of a grass-fire cycle, and this signal may

appear in the model due to the grasses that were

included in the training data.

All of the grasses in the training dataset were

ranked as high/medium risk by the majority of experts

(Fig. 1). This result is not surprising given the well-

recognized historical relationship between grasses and

fire in many parts of the world and the fact that all

grassses surveyed were relatively large and compet-

itive species that grow in dry or seasonally dry

environments. Of all the growth form traits examined,

graminoid was the only one which was retained in the

final model indicating its major importance. However,

the fact that no grasses in the training dataset were

rated by experts as a low fire risk is also a limitation as

it means that the cforest model may not have learned to

distinguish between high and potentially low fire risk

grasses as well as possible. Nevertheless, the screening

system will rate a grass as low risk, depending on

information from the remaining three model variables,

so we expect that the model can identify low risk

grasses when they are screened.

The experts surveyed ranked all five vines in the

training set (Cardiospermum grandiflorum, Coccinia

grandis, Cryptostegia spp., Dolichandra unguis-cati,

and Passiflora tarminiana) as a low fire risk in

Hawai0i. This is interesting as vines often act as ladder
fuels which can move flames from a ground or grass

fuel layer into the canopy and cause an escalation from

a surface fire into a canopy fire (Brooks et al. 2004). It

is uncertain whether these vines were ranked as low

fire risk because they do not act as ladder fuels, or

whether managers felt that they did not add substantial

fuels to a fire.

Extending the model

The screening system, as it was developed here, likely

has lower value for predicting wildfire risk of native

species since the Fire Promoting Invader Elsewhere

question used is not applicable for most native plants

which have not had a history of introduction outside

the native range. The screening tool presented here is

expected to be most useful when local expertise about

a species fire risk is not available in an area, whereas

for many native species, local expertise and evidence

from historical fire records may be more readily

available.

In the course of carrying out literature searches, it

was noticed that fire-related data seemed sparse for

some species originating from predominantly non-

English speaking regions including, but not limited to

Eastern and Southeast Asia, and Central America,

especially when the species is not naturalized in other

areas. Although we utilized online translations ser-

vices when non-English sources were found online,

additional data may exist in languages other than

English that were not discovered using our English

keywords and scientific names as search terms. This

had little impact on the 49 species in the training

dataset, but assessment of future species could include

local keywords for fire from the species native/

introduced range when searching the literature.

Testing for biases

We also tested whether expert survey participants who

identified as researchers may have added circularity to

the data by using their knowledge of literature rather

than personal experience to rate fire risk (contradicting

our survey instructions). We ran the reduced (4

variable) model again, but excluded researchers from

the expert survey data. We found that the model

RMSE increased slightly after removing the research-

ers (from 0.178 to 0.185) and the AUC also slightly
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increased (from 0.881 to 0.885). These only minor

changes in model predictive skill suggest that

researchers, who were expected to have deep knowl-

edge of scientific literature, did not strongly bias our

survey results or introduce circularity.

Application of the model in Hawai0i

To illustrate an application of the system, we screened

142 recently naturalized and potentially naturalizing

plant species in Hawai0i in order to determine whether

they may be expected to pose wildfire risks. Because

these species have not yet spread widely in Hawai0i,
direct field experiences in Hawai0i are not informative

of fire risk for these species. The screening system

indicates that the vast majority of newly naturalized

species pose a low fire risk, and this allows managers

to focus on a small number of species categorized as

higher risk. Species distribution models could be

considered to identify which areas the species are

likely to spread into, so management and containment

work can be focused in those areas (Chambers et al

2019). Additional local information should also be

considered in prioritization.

Among the eight species categorized as higher risk

(Table 3), all scored well above the 0.34 cut-off,

ranging from 0.50 to 0.70. Only one of these species is

a grass, which is known only from a limited area of

one island (Moloka‘i), and it might be considered as a

target for eradication. A herbaceous second species,

Cirsium arvense, is a spiny thistle that was reported as

naturalized on Maui in 2018 (Oppenheimer 2019).

This species is an aggressive weed in various parts of

the world, spreads clonally by rhizomes as well as

wind dispersed seeds (Keil 2006) and has been

demonstrated to be a fire risk on the mainland United

States. It also regenerates well after fire and it is

promoted by fire (Zouhar 2001). Controlling popula-

tions as they enter fire sensitive areas should be of high

priority.

The remaining six species categorized as higher

risk are woody. Chromolaena odorata is a sprawling

shrub that has already been recognized as a major

weed and is the focus of an eradication campaign by

the O‘ahu Invasive Species Council (www.oahuisc.

org/devil-weed/), but it has also been detected on

Hawai0i island as of 2021 (https://www.biisc.org/

chromo/). These informational websites discuss vari-

ous impacts of this invader but do not mention fire risk,

suggesting a possible information gap. C. odorata has

been described as having such extreme flammability

(ignitability) as to be able to burn while still green

(Macdonald 1983) and can act as a ladder fuel which

can elevate understory or grass fires to become canopy

fires (Te Beest et al. 2012). It also quickly regenerates

after fire but fortunately, its population does not seem

to increase after fire (Te Beest et al. 2012).

Two species of Eucalyptus (E. cinerea and E.

goniocalyx) have begun to show signs of naturaliza-

tion and spread from the forestry plantations where

they were initially planted (Wagner et al. 1999).

Formation of new satellite populations should be

monitored as Eucalyptus is generally a high fire risk.

These species could be considered lower priority for

immediate control, since plantations were planted[
50 years ago and their recruitment rates have been

relatively low. Wildfire risk is likely to be lower for

these species unless dense stands develop.

Two additional woody plants, Banksia marginata

and Gutierrezia sarothrae are upright shrubby plants

cultivated for their attractive flowers, but they could

pose serious wildfire risk if they form dense popula-

tions. Both of these species require careful monitoring,

particularly because they both produce abundant

wind-dispersed seeds and will be difficult to control

if they begin to spread more widely.

The last species in the higher risk category seems to

be of less concern. Pachira aquatica was first iden-

tified as naturalizing on O‘ahu in 2011 (Evenhuis and

Eldredge 2013). This species is recognized as produc-

ing a flammable litter which can promote fires during

the dry season in mangrove forests in Mexico

(Calderón et al. 2020). In Hawai0i it has been

naturalized in lowland rainforest, where its litter is

unlikely to burn, and the plant has low dispersal

ability, producing few, very large seeds. Control of

this plant is a low priority in terms of wildfire concern.

Conclusion

Invasive plants are often an important component of

the biomass that promotes wildfires. Because the

frequency and intensity of wildfires has been on an

upward trend globally, and because climate change

has the potential to increase wildfire risk in new areas,

proactive management to prevent the spread of new

fire-promoting invaders is an important approach to

123

A screening system to predict wildfire risk of invasive plants

http://www.oahuisc.org/devil-weed/
http://www.oahuisc.org/devil-weed/
https://www.biisc.org/chromo/
https://www.biisc.org/chromo/


reduce wildfire risks in many dry or seasonally dry

regions of the world. We developed and tested a

screening system capable of identifying plant species

that pose higher fire risk. The screening system has

high accuracy based on testing in Hawai0i and uses

data readily available from literature and databases.

This screening system may be useful to land managers

and decision makers for identifying plant management

and exclusion priorities in any area where wildfire is a

concern.
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