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• Fire is a key threat in Hawaii and other
islands but predictive tools are limited.

• Spatial fire occurrence models reveal
the relative influence of multiple
drivers.

• Rainfall-vegetation interactions were a
key predictor of fire risk variability.

• Future drying with climate change will
shift peak fire risk to higher elevation.

• Fire probability will decline by popu-
lated areas but increase near high
value forest areas.
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The area burned annually by wildland fire in Hawaii has increased fourfold in recent decades. The archipelago's
novel fuel types and climatic heterogeneity pose significant challenges for fire risk assessment and fire manage-
ment. Probability-based fire occurrence models using historical wildfire records provide a means to assess and
attribute fire risk in regions of the world like Hawaii where investment in fire science is limited. This research
used generalized additive models to 1) assess the relative contribution of vegetation, climate, and human-
caused ignitions to the probability of fire in the northwest quadrant of Hawaii Island and 2) compare how land-
scape flammability varies due to interannual rainfall variability versus projected changes inmean annual rainfall
(MAR) and temperature. Annual fire probability was highest for grasslands and peaked at drier conditions
(0.04 at 450 mm MAR) when compared with shrublands (0.03 at 650 mm MAR) and forest (0.015 at 600 mm
MAR). Excess rainfall the year prior to fire occurrence increased fire risk across grasslands, and thus overall fire
probability, more so than drought the year that fire occurred. Drying and warming trends for the region under
projected climate change increased maximum values of fire probability by as much as 375% and shifted areas
of peak landscape flammability to higher elevation.Model predictions under future climate also indicate the larg-
est changes in landscape flammability will happen bymid-Century. The influence of antecedentwet years on fire
risk can improve near-term predictions of fire risk in Hawaii while climate projections indicate that firemanage-
ment will need to be prioritized at upper elevations where high value natural resources are concentrated.
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1. Introduction

Wildland fire varies in frequency and intensity across landscapes
due to the influence of climate, vegetation, and patterns of ignition
(Bowman et al., 2009; Parisien and Moritz, 2009; Pausas and Keeley,
2009). Research on pyrogeography has discerned patterns in fire distur-
bance across geographic space from local to global scales (Bowman
et al., 2014; Krawchuk et al., 2009; Murphy et al., 2013; Trauernicht
et al., 2015a). These same relationships inform models of landscape
flammability that integrate various predictors such as available mois-
ture and temperature (Guyette et al., 2012; Hoyos et al., 2017), plant
community structure and physiognomy (Fraser et al., 2016; Paritsis
et al., 2013) as well as topography and substrate (Stambaugh and
Guyette, 2008; Wood et al., 2011). These analyses contribute to both
theoretical and applied aspects fire ecology. Fire-vegetation feedbacks,
for instance, provide key insight into the stability and distribution of for-
est and savanna ecosystems (Bond and Keeley, 2005; D'Antonio and
Vitousek, 1992; Murphy and Bowman, 2012; Nowacki and Abrams,
2008). Climatic thresholds of fire occurrence also help land managers
and landowners identify and implement ecologically beneficial fire re-
gimes (Schmidt et al., 2018; Twidwell et al., 2016). Landscape flamma-
bility is also relevant to understanding the risk posed by fire to valued
assets and resources (Penman et al., 2014; Sturtevant et al., 2009).

By contrast, tools for wildland fire risk assessment typically draw on
highly sophisticated fire behavior models in a spatially explicit frame-
work that predict fire spread across a landscape (Ager et al., 2011;
Perry, 1998; Sullivan, 2009). Fire spread models provide invaluable
tools for both risk assessment and fire suppression efforts. However,
in many parts of the world, limited resources and fire science capacity
place real constraints on the development and validation of fire behav-
ior models. This is especially the case on islands where novel fuels types
– both endemic vegetation and completely novel, nonnative ecosystems
–limit the accuracy of existingmodels (Beavers et al., 1999; Benoit et al.,
2009; Pierce et al., 2014). In these cases, probabilistic approaches to
modeling fire occurrence that use observed burned areas or historical
fire records may reduce the number of assumptions underlying more
complex fire spread models (Brillinger et al., 2006; Preisler et al.,
2004). Applications of this approach range from stand level burn pat-
terns based on vegetation and microclimatic factors (Gonzáles et al.,
2006; Trauernicht et al., 2012) to regional analyses that integratefire re-
cords, climate,weather, and land cover data (Dickson et al., 2006; Hoyos
et al., 2017; Parisien andMoritz, 2009; Paritsis et al., 2013). A further ad-
vantage is that probabilistic approaches often allow models of fire oc-
currence to be parameterized from existing datasets (Bremer et al.,
2018; Preisler et al., 2004).

Hawaii and other Pacific Islands provide some of the clearest evi-
dence of both historical and contemporary fire-driven shifts from forest
to savanna vegetation due to anthropogenic fire (Dodson and Intoh,
1999; Ellsworth et al., 2014; Perry et al., 2012; Trauernicht et al.,
2015b). These derived savannas (sensu Veldman and Putz, 2011) ap-
pear to represent highly resilient, alternative ecosystem states (Tepley
et al., 2018; Yelenik and D'Antonio, 2013) and support high frequency
fire regimes compared to relatively infrequent fires in native ecosys-
tems prior to human arrival (Athens and Ward, 2004; Burney and
Burney, 2003; Perry et al., 2012). The extent of area burned annually
in Hawaii has increased four-fold in recent decades, rivaling thewestern
US in terms of the percentage of land area affected annually
(Trauernicht et al., 2015b). This change infire regime is driven by strong
rain shadows, episodic drought, and frequent human-caused ignitions,
combined with agricultural abandonment which has left large-scale,
continuous beds of fine fuels covering a third of the archipelago's unde-
veloped land surface (c. 4000 km2 ; Hawbaker et al., 2017). With light-
ning strikes relatively rare on oceanic islands and prescribed or
managed burning largely ceasing in Hawaii with the closure of large-
scale sugarcane plantations in the past decade, the vast majority of
fires are caused by humans either accidentally or as arson
(Trauernicht et al., 2015b). Although N80% of the area burned annually
in Hawaii is constrained to nonnative, derived savannas (Hawbaker
et al., 2017), the novel fire regime exposes both residential areas and
forested ecosystems to fire impacts. Native ecosystems in Hawaii are
particularly sensitive in that fire disturbance typically favors nonnative
species establishment leading to native species and habitat loss and
long-term conversion to more fire-prone vegetation (Ainsworth and
Kauffman, 2013; D'Antonio et al., 2017; LaRosa et al., 2008;
Trauernicht et al., 2018).

Despite plot- and site-level evidence of increasing flammability in
Hawaii (Ainsworth and Kauffman, 2013; D'Antonio et al., 2011, 2017;
Hughes et al., 1991), few studies examinehow savanna expansion alters
the spatial patterns of fire for island landscapes (D'Antonio et al., 2000;
Ellsworth et al., 2014; Perry and Enright, 2002), nor how fire occurrence
may be modulated by spatial and temporal climate variability (Chu
et al., 2002; Dolling et al., 2005; Van Beusekom et al., 2018). In Hawaii,
this is due, in part, to limited investment in fire research and risk assess-
ment tools relative to the continental US as well as sparse weather data
relative to the islands' radical climate variability (Weise et al., 2010). As
elsewhere in the tropics, Hawaii also presents challenges in terms of
predicting future changes in landscape flammability. Locally down-
scaled climate projections are largely boiled down to mean annual var-
iables, such as temperature and rainfall, whereas fire risk is more
influenced by the extremes, or tails, in the distribution of these condi-
tions. In temperate ecosystems, future fire occurrence is linked to in-
creasing duration of the fire season, or the hotter, drier climatic
conditions underwhichfire ismost likely, underwarming temperatures
(Jolly et al., 2015; Moritz et al., 2012; Westerling et al., 2006). In con-
trast, understanding shifts in fire activity due to climate change in the
tropics is constrained both by the lack of research establishing climatic
and weather thresholds for fire occurrence as well as the limited ability
of climate models to capture changes in the El Niño-Southern Oscilla-
tion and rainfall seasonality such as the Asian Monsoon (Huang et al.,
2013; Turner and Annamalai, 2012; Vecchi and Wittenberg, 2010),
which are strong drivers of variation in tropical fire regimes (Chu
et al., 2002; Gill et al., 2000; Van DerWerf et al., 2008). Coarser climatic
variables like mean annual rainfall may still constrain and promote fire
activity, creating climatic ‘sweet spots’ for fire (Bradstock, 2010;
Murphy et al., 2011). Therefore, examining the relative influence of cli-
mate variability and average climatic conditions on fire occurrence re-
mains a key task for understanding how landscape flammability varies
in the tropics.

In response to the limited availability of landscape-scale analyses of
fire occurrence and direct requests from land managers and ecosystem
service modelers for improved assessments of fire risk in Hawaii, a
modeling frameworkwas developed that draws on fundamentalfire re-
gime concepts (i.e., pyrogeography; Krawchuk et al., 2009; Bowman
et al., 2014) and existing data sets tomodel the probability of fire occur-
rence across a large (3000km2 ) landscape encompassing the northwest
quadrant of the ‘Big Island’ of Hawaii. The research objectives were:
1) to develop a model of fire occurrence to assess the relative contribu-
tion of vegetation, climate, and ignitions to the probability of fire for the
region; and 2) compare how landscapeflammability varies due to inter-
annual rainfall variability vs. longer-term projected changes in mean
annual rainfall and temperature.

2. Materials and methods

2.1. Study region

We selected the northwest quadrant of Hawaii Island (a.k.a. “Big Is-
land”) for this analysis primarily because it provides the longest history
of wildland fire burned area records (i.e., fire scar maps) for the state of
Hawaii (Castillo et al., 2003). The region also contains watersheds of in-
terest in two related, interdisciplinary assessments of biophysical, eco-
nomic and cultural landscape values (Bremer et al., 2018; Wada et al.,
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2017). The study area is a c. 3000 km2 island landscape with dramatic
ranges in climate, geology and ecology. Situated on the western flanks
of Kohala, Hualalai and the saddle between Mauna Kea and Mauna
Loa volcanoes, elevation ranges from 0 to 3180 m above sea level
(Fig. 1a). Mean annual rainfall ranges from 200 mm towards the coast
to N3000 mm in higher elevation areas receiving orographic rainfall
(Fig. 1b). Historical rainfall indicates a significant drying trend for west
Hawaii Island over the past several decades (Frazier and Giambelluca,
2016) and, although downscaled climate projections are spatially vari-
able, they predict 18–25% declines in annual for drier areas of the region
by mid-century, in addition to warming temperatures (Elison Timm,
2017; Giambelluca et al., 2008; Elison Timm et al., 2015).

Most of Hawaii’s landscape has been heavily transformed by histor-
ical land use and species introductions (Vitousek et al., 1987). Fire fre-
quency likely increased with initial human settlement and there are
anecdotal accounts of Hawaiians using fire to clear agricultural lands
as well as larger scale burning to manage pili (Heteropogon contortus)
grasslands for thatch and fernlands for food/fodder (Kirch, 1982;
McEldowney, 1979; Menzies, 1920). After European contact, disease,
economic integration and colonial land privatization in the interests of
agricultural development led to dramatic increases in the human eco-
logical footprint in Hawaii. In west Hawaii Island, cattle became the
dominant land use beginning in the 19th Century and, despite declines
through the late 20th Century, ranching remains a central part of local
culture and livelihoods (Bremer et al., 2018). The early expansion of
the cattle industry reduced forest cover (Blackmore and Vitousek,
2000) but, at present, unmanaged feral ungulates and the spread of
nonnative plant species, especially fire-adapted grasses, arguably pose
Fig. 1. Maps of study region indicating (a) land cover and fire history, (b) mean annual
rainfall, and landscape flammability predictions based on generalized additive models
parameterized (c) without a spatial predictor term and (d) with a spatial predictor term
(see Methods). Values of landscape flammability are presented as fire return intervals,
derived from the reciprocal of the probability of annual fire occurrence.
the greatest land management and conservation challenges across the
archipelago (Mueller-Dombois and Spatz, 1975; Vitousek et al., 1987;
Wehr et al., 2018). Increases in the extent of large fires in recent decades
coincide with dramatic declines in the extent of actively grazed lands
and plantation agriculture beginning in the 1960s (Gollin and
Trauernicht, 2018; Trauernicht et al., 2015b).

Grassland is the most extensive vegetation type in the study region,
covering c. 1000 km2 , of which 95% is dominated by the nonnative spe-
cies Pennisetum setaceum at lower elevation and Pennisestum
clandestinum at moist, middle elevations (Blackmore and Vitousek,
2000). Shrublands cover c. 340 km2 , of which 67% are classified as na-
tive species dominated. Much of these shrublands, however, contain a
significant nonnative grass component and are interspersed with the
contiguous nonnative grasslands. The largest recorded fires in Hawaii
(10–18,000 ha) have occurred in these nonnative grasslands and
shrublands in the study region. Forest covers c. 830 km2 across a wide
elevation gradient up to 2500 m. Native forest (62% of total forest
cover) includes wet, mesic and dry types, which are typically confined
to middle to upper elevation areas. The region contains the largest re-
maining tracts of Hawaii's most diverse and threatened tropical forests
(Pau et al., 2009) which adjoin nonnative grasslands and shrublands.
Another 630 km2 of land consists of barren or sparsely vegetated lava
flows which are increasingly covered in nonnative grass and capable
of carrying fire (Gollin and Trauernicht, 2018). Human population den-
sity is low relative to other islands in the archipelago, with only
120 km2 of developed areas and 13 km2 of agriculture cover. Fires are
most frequently started accidentally by people along roadsides (Pierce
and Pickett, 2014) and suspected arson is not uncommon. Although
lightning is far less frequent on islands than continental regions, several
recent large fires have been ignited by lightning in the study region.

2.2. Modeling flammability

Landscape flammability was derived from a 20-year (1992–2011)
dataset of 91 fire perimeters (ranging from b10 to N10,000 ha) for the
NWquadrant of Hawaii Island,mapped by theHawaiiWildfireManage-
ment Organization and the USGS Monitoring Trends in Burn Severity
program (Hawbaker et al., 2017). Using R software, polygons of annual
area burned were converted to gridded rasters at 30 × 30 m resolution
to align with the 2012 LANDFIRE Existing Vegetation Type product for
Hawaii. The response variable, annual fire probability, was derived by
randomly selecting 1000, 30 × 30 m grid cells from the 3.36 million-
cell landscape from each year of the fire history and classifying each as
burnt or unburnt (a binomial response) for a total of 20,000 sample
points. Each sample pointwas also attributedwith the following predic-
tor variables: (i) simplified land cover (Forest, Shrubland, Grassland,
Agricultural, Developed, and Other from LANDFIRE; Rollins, 2009); (ii)
ignition density derived from point-based wildfire ignition records
from2004 to 2012 (Pierce and Pickett, 2014); (iii)mean annual rainfall;
(iv) rainfall anomaly the year of the fire, (v) rainfall anomaly the year
prior to the fire; and (vi) mean annual temperature (mean annual cli-
mate variables: Giambelluca et al., 2013; annual rainfall: Frazier and
Giambelluca, 2016).

Generalized additive models (GAMS; e.g. Chou et al., 1993; Preisler
et al., 2004; Wood, 2006) were used to fit the probability of fire occur-
rence as a function of all possible combinations of predictor variables.
Interactions between land cover and each rainfall predictor (3 interac-
tions total) were analyzed becausemean annual rainfall is a key ecolog-
ical criterion by which vegetation types are classified (e.g., dry, mesic,
and wet forest) and because rainfall anomalies were expected to affect
fire risk differently in grassland, shrubland, and forest. For example,
fire probability may increase in both grasslands and forest under
drought, but wet years might only affect fire probability in grasslands
through biomass accumulation (Govender et al., 2006; Greenville
et al., 2009). Fire probability would likely differ in its response to daily
and seasonal fluctuations in temperature across vegetation types,
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however, an interaction between mean annual temperature and land
cover was not expected and therefore not modeled. Ignition densities
are highest in developed areas and grasslands (Trauernicht et al.,
2015a, b) but are so comparably low across forested areas that the inter-
action between ignition density and land coverwas not included. A total
of 140models were ranked relative to the null model using Akaike's In-
formation Criterion (Burnham and Anderson, 2002).

This approach is effectively a habitat distribution model of flamma-
bility, a concept that has been applied by others to examine the drivers
fire occurrence across multiple spatial scales (Hoyos et al., 2017;
Parisien and Moritz, 2009; Paritsis et al., 2013). In this analysis, the
use of randomized, annual samples was intended to equate model pre-
dictions to the annual probability of fire occurrence per grid cell. Quan-
tifying annual fire probability for an entire landscape can be
alternatively interpreted as regional fire frequency (sensu Li, 2002) or
fire return interval (i.e., the reciprocal of annual probability). Thus, the
response variable may be best interpreted as how the vegetation and
climatic features in the landscape support low or high frequency fire re-
gimes. Some degree of autocorrelation was expected in the analysis
over both spatial (e.g., multiple points sampled from single fires) and
temporal (e.g., adjacent or identical locations sampled year to year) di-
mensions. Restricting annual samples to 1000 random pixels (b0.003%
of the 3000 km2 landscape) was intended to minimize autocorrelation
and model overfitting. Temporal autocorrelation was also addressed by
including a random effect for year (Brillinger et al., 2006). To explore
spatial autocorrelation, we ran a Moran's I correlogram (ncf package
in R) of residuals from the initial model set. We also fit another model
setwith the samepredictors above (i.e., 140model combinations) in ad-
dition to a spatial, or geographic, predictor (e.g. “+ s(x,y)”) to account
for spatial autocorrelation (Simpson, 2012). We present and compare
both model sets to better understand the predictive behavior of GAMs
for this application.

2.3. Spatial predictions

The Raster package in R (Hijmans et al., 2012) and the best sup-
ported GAMs were used to predict the annual probability of fire occur-
rence across the study region under current land cover and mean
climate conditions (i.e., annual rainfall anomalies set to zero). Standard
deviations (SD) of annual rainfall per grid cell from the 21-year
(1991–2011) rainfall history were used to examine the effects of posi-
tive (+1 SD) and negative (−1 SD) rainfall anomalies for both the
year of fire and the year prior to fire on predicted landscape flammabil-
ity (a total of four scenarios). The effects of climate change on landscape
flammability was assessed by running model predictions with future
mean annual rainfall and temperature under the RCP 8.5 climate sce-
nario (IPCC) available from two downscaled data sets for Hawaii. Statis-
tically downscaled projections were available for both mid-Century
(2040–2060) and late Century (2080–2100; Elison Timm et al., 2015
and dynamically downscaled projectionswere available for late Century
(Zhang et al., 2017), providing three future climate scenarios: (i) Mid-
century RCP 8.5 Statistical; (ii) Late Century RCP 8.5 Statistical; and
(iii) Late century RCP 8.5 Dynamical. Projected dynamical variables
were produced by adding the difference between future and present
modeled values to the current values derived from spatially interpo-
lated weather observations (Giambelluca et al., 2013). The convention
among climate impactmodelers inHawaii to account for differences be-
tween the statistical and dynamical projections is to present and com-
pare results using both sets of projections (L. Fortini, pers. comm.). To
compare current, mean conditions with the effects of annual rainfall
anomalies and future climate, the standard error (SE) of model predic-
tions for each grid cell was determined by bootstrapping randomized
burned area sampling, model fitting, and model prediction 100 times
each for all scenarios (at 250 × 250 m resolution to reduce processing
time). Statistically significant change in flammability was defined as
any area for which therewas no overlap in the 95% confidence intervals
(±SE ∗ 1.96) between predictions formean, current conditions and each
of the climate scenarios. Change in landscape flammability was exam-
ined by plotting rasters and boxplots of the difference in fire probability
between current, mean fire conditions and each of the scenarios for all
grid cellswith a statistically significant change. In addition, density scat-
ter plots of flammability values versus elevation were examined for
each scenario.

3. Results

3.1. Fire occurrence and model results

Of the dominant, simplified land cover classes, “Grassland”, “Shrub-
land”, “Forest” accounted for 51%, 21%, and 18%, respectively, of the area
burned across the landscape (Fig. 1a). The percent of the total area
burned across grasslands and shrublands was disproportionate to
their spatial extent. Grasslands, which cover one-third of the study
area, accounted for 51% of the total area burned. Shrublands comprised
just over 10% of land cover and accounted for 21% of the area burned.
Forests comprised 27% of land cover and accounted for 18% of the area
burned. For the fire occurrence models, the global models were best
supported among both the initial set of GAMs (Akaike Weight N 0.99)
and the set of GAMs with the spatial predictor (Akaike Weight N 0.99).
Correlograms indicated somedegree of spatial autocorrelation in the re-
siduals of themodel without the spatial predictor (Supplemental), indi-
cating lower confidence in model error estimates. However, the
explained deviance for both model sets showed little variability over
100 replicated model runs (46.3% ± 0.003 SE with spatial term vs.
34.7% ± 0.003 SE without spatial term).

3.2. Effects of predictors

Effects plots of individual predictors indicate that the GAM compo-
nents provide good fits to the data (Fig. 2). Since the GAM additively
combines the effects of predictor variables, the relationships between
fire probability and the predictors presented are the same whether or
not the spatial term is included in the global model (Wood, 2006).
Mean annual rainfall (MAR) illustrates different climatic ‘sweet spots’
for fire occurrence in grasslands, shrublands, and forest across the rain-
fall gradient (Fig. 2b). Fire probability was highest for grasslands and
peaked at drier conditions (0.04 at 450 mm MAR) when compared
with shrublands (0.03 at 650 mm MAR) and forest (0.015 at 600 mm
MAR). Rainfall anomalies the year prior to fire exerted a strong effect
on grasslands in which wetter conditions (positive anomalies) resulted
in much higher fire probability and drier conditions (negative anoma-
lies) slightly increased fire probability in forests and shrublands
(Fig. 2c). Drier conditions (negative anomalies) the year of fire in-
creased fire probability for both forests and shrubland vegetation
types with the largest effect in shrublands, whereas fire probability in
grasslandswas highestwith no rainfall anomaly (Fig. 2d).Wetter condi-
tions the year of fire (positive anomalies) resulted in a slight decrease in
fire probability across vegetation types relative to normal conditions
(Fig. 2d). Therewere two peaks in fire probability formean annual tem-
perature (Fig. 2e) and a single peak in fire probability at intermediate
values of ignition density (Fig. 2f). Among the predictors, the interaction
between land cover and prior year rainfall anomaly explained the larg-
est proportion of all model predictors (14.2%), followed by the interac-
tion between land cover and mean annual rainfall (10.5%), the
interaction between land cover and rainfall anomaly the year of fire
(10%), mean annual temperature (7%), and ignition density (3%).

3.3. Landscape flammability predictions without the spatial term

The GAM without the spatial term predicted a ‘belt’ of peak fire
probability across the middle to low elevations of the landscape under
current, mean climate conditions, largely associated with the extensive



Fig. 2. Plots of (a) annual area burned across the study region and (b–f) the effects of individual predictors used in the generalized additivemodels (GAM). Points and error bars represent
the mean and 95% confidence intervals, respectively, of observed fire probabilities binned across the independent variables. Solid lines are GAM predictions, dashed lines are the 95%
confidence intervals, and R2 values are the deviance explained by individual GAMs fitted with the indicated predictors.
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grasslands of the region (Fig. 1c). Another peak in flammability distribu-
tion coincided with higher elevation areas comprised of mixed shrub-
land and forest that are drier due to the trade wind inversion layer
(1800–2400 m) and the rain shadow of Mauna Kea (Fig. 1b, c). There
was an increase in fire probability under drier conditions the year of
fire, largely within the same area of peak flammability under mean cli-
mate conditions (Fig. 3a,b). Wet conditions the year of fire produced
Fig. 3.Effects of annual rainfall anomalies onpredicted landscapeflammability and the change in
that fire occurs, (c,d) positive anomaly the year that fire occurs, (e,f) negative anomaly the year
as plus or minus one standard deviation determined per grid cell from a 21-year (1990–2011)
where the 95% confidence intervals of bootstrapped predictions overlap between each scenari
relatively little change in fire probability (Fig. 3c,d). Drier conditions
the year prior to fire reduced fire probability across much of the grass-
land area in the center of the study region, but increased fire probability
in the upper elevation areas with greater shrubland and forest cover
(Fig. 3e,f).Wet conditions the year prior to fire resulted in the largest in-
crease in maximum fire probability and across a wider extent of the
landscape than current, mean conditions (Fig. 3g,h).
fire probability relative tomean, current conditionsunder (a,b) negative anomaly the year
prior to fire and (g,h) positive anomalies the year prior to fire. Anomalies were determined
annual, cumulative rainfall history. Gray shading indicates areas of nonsignificant change,
o and current, mean conditions.
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Landscape flammability increased under all three future climate sce-
narios in terms of median and maximum predicted fire probability and
resulted in a spatial shift in peak flammability over the landscape. In
general, projected decreases in rainfall and increases in temperature re-
sulted in an inland (eastward) shift in peakflammability, with fire prob-
ability decreasing at lower elevation sites and increasing at higher
elevation sites (Fig. 4). The change in landscape flammability from cur-
rent, mean conditions to mid-Century climatic conditions was greater
than the change from mid-Century to late Century (Fig. 4c–h). The dis-
tributions of change in fire probability per grid cell indicated that the
magnitude of the increased fire probability under a wet year prior to
fire occurrence is comparable to projected future conditions (Fig. 5).
Maximum change in fire probabilities were greater under the future
scenarios, but the median change was greater under a wet year prior
to fire. Plotting fire probability against elevation for all scenarios illus-
trated that future conditions are characterized by a larger increase in
fire probability at higher elevations than under current rainfall anoma-
lies (Fig. 6).
3.4. Landscape flammability predictions with the spatial term

In contrast to the results above, the GAM with the spatial term pre-
dicted fire probabilities that were heavily weighted towards the most
frequently burned area of the landscape (Fig. 1a,d). The directional ef-
fects of rainfall anomalies on fire probability were similar to predictions
without the spatial term, however, areas of increased flammability
showed little spatial change and were centered over the areas of maxi-
mum flammability predicted for current, mean conditions (Fig. S2, Ap-
pendix). Predictions for future climate scenarios were similarly
constrained in space, but also resulted in fire probabilities far greater
than conditions under mean, current climate (Fig. S1, Appendix). Max-
imum predicted values under climate change scenarios, for example,
approached 100% for the annual probability of fire occurrence, an in-
crease by three- to fourfold over maximum fire probabilities under cur-
rent, mean conditions (Fig. S3).
Fig. 4. Landscape flammability (a) prediction and (b) standard error under mean, current cl
condition under future mean annual temperature and rainfall projections for (c,d) statisticall
late-Century (2080–2099) RCP 8.5 scenario, and (g,h) dynamically downscaled late-Century
confidence intervals of bootstrapped predictions overlap between each scenario and current, m
4. Discussion

4.1. Fire probability vs. landscape flammability

This analysis essentially uses historical fires as a signal to assess and
attribute flammability over ecological and climatic space. Themodeling
approach and available data impose some constraints on both the inter-
pretation and attribution of landscape flammability. First, the twenty-
year fire history is a relatively short-term data set for fire regimes, but
was purposefully limited so as not to be confounded by changes in
land use, especially ranching and grazing regimes, that would not
have been accounted for by the land cover data. Second, the use of fire
probability, a binary response, indicates relative fire frequency but not
intensity, which is another key characteristic of fire regimes. Third, the
older fire perimeters (1992–2001)were only attributedwith year of oc-
currence, constraining the temporal resolution of the climatic predictors
to annual time steps. Finally, the available land cover and ignition den-
sity data sets were fixed in time which prevented the model from ac-
counting for fire-driven or other vegetation change and temporal
variability in human-caused ignitions. However, in light of these limita-
tions, the deviance explained by the best supported models (34.7% and
46.3%) exceeded expectations. In other words, despite missing finer-
scale variability in weather conditions and the limitations in accounting
for human influence on both ignition sources and fire suppression ef-
fects, a relatively simple set of predictors (vegetation, climate, and igni-
tion density) explained a good proportion of the variance in observed
fire probability. In addition, despite relatively coarse climate data
(i.e., annual and future mean change), the facility with which the GAM
framework provided numerical and spatial predictions when these pa-
rameters were altered for the various scenarios revealed both antici-
pated and novel results. The model outcomes will be discussed below
in the context of fire regimes ultimately tomake the case for the advan-
tages to this approach in that it: 1) is employable with existing, region-
ally accessible data; 2) presents transparent assumptions that simplify
the assessment and communication of fire risk; and 3) points clearly to-
wards opportunities to improve model performance.
imate conditions and predicted landscape flammability and change from mean, current
y downscaled mid-Century (2040–2060) RCP 8.5 scenario, (e,f) statistically downscaled
RCP 8.5 scenario. Gray shading indicates areas of nonsignificant change, where the 95%
ean conditions.



Fig. 5. The distributions of per grid cell change infire probability values betweenmean, current conditions and each of the annual rainfall anomalies and future climate scenarios using the
Generalized Additive Model without the spatial predictor term. Whiskers indicate minimum and maximum values, boxes indicate 25th and 75th percentiles, and the horizontal line
indicates the median.
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The first objective of this research was not to strictly predict fire
probability, or where fires are most frequent in the study region
(Fig. 1a), but to assess how climate and vegetation contribute to land-
scape flammability, defined here as the relative propensity for areas or
ecosystems across the landscape to burn. The GAMsused in this analysis
allow one to partition the variance explained acrossmodel components
such that we can examine relative contribution of the predictors. This
includes understanding the effects of using geographic location as a pre-
dictor variable. The spatial term increased the total deviance explained
by the model by c. 11%, however, it is ultimately intended to account
for issues of spatial autocorrelation which may emerge from drawing
multiple grid cells from the same or spatially clustered fires. Model pre-
dictionswith the spatial termprovide a good indication ofwhere histor-
ical fires have been most frequent (e.g., Fig. 1a, d), but do little to
indicate how the other predictor variables contribute to fire risk across
the landscape (Fig. 2). In other words, the effect of the spatial term on
fire probability is strong enough that model predictions made with
this term effectively conceal the effects of vegetation and climate across
Fig. 6. Scatter plots illustrating the counts of grid cellswithin binnedfire probability values versu
climate scenarios.
the larger landscape. In addition, by weighting predictions of high fire
probability to the geographic space in which historical fires were most
frequent, the use of the spatial term also limits the ability of the model
to assess the effects of spatial changes in climate parameters on fire
probability, with respect to both annual rainfall anomalies and future
climate change.

Despite the inherent uncertainty around predicting future fire risk,
the magnitude of change in projected climatic conditions for the study
region largely lie within the range of observed climate variability cap-
tured in themodel fitting. In other words, climate changewill not affect
the absolute values or range of climate parameters as much as it will
change their spatial patterns over the landscape (Elison Timm et al.,
2015). Therefore, one would expect that predicted fire probability
under climate change would change more in its spatial distribution
than in its magnitude. However, the GAM with the spatial term pro-
duced dramatic increases in fire probability under climate change
(e.g., close to 1) that were ‘centered’ over the areas of highest probabil-
ity predicted under current, mean climatic conditions (Fig. S2,
s elevation for current, mean conditions and each of the annual rainfall anomaly and future
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Appendix). This pattern reflects the tendency for the spatial term to
weight fire probability towards areaswhere historical fires aremost fre-
quent and suggests the GAM with the spatial term poorly accounts for
the potential effects of spatial changes in climate parameters on pre-
dicted fire probability. This pattern of centering predicted fire probabil-
ity is also reflected in model predictions for annual rainfall anomalies
using the spatial term (Figs. S1, S3, Appendix). The statistical argument
whether or not to use the spatial term in this analysis may bemost sim-
ply framed by concerns over potential effects of spatial autocorrelation
on the error estimates of individualmodel predictions. First, theMoran's
I correlogram indicated only a slight degree of spatial autocorrelation
(Fig. S4, Appendix). Visually, the relationships between fire probability
and individual predictor variables indicate that the GAMprovides effec-
tive predictions relative to variance in the actual data (Fig. 2). However,
it is also important to point out that the comparisons of the effect of an-
nual and future climate variability on landscape flammability (the sec-
ond research objective) depended not on the estimated error of
individual models, but on the error of replicated model predictions (N
= 100) derived by bootstrapping both randomized sampling of the
landscape and model fitting. In summary, spatial autocorrelation is
nominal and the use of the spatial term constrains both the ability to as-
sess the effects of climate and vegetation on fire probability as well as
produces highly questionable fire probability predictions under scenar-
ios in which climate parameters are altered. Therefore, despite having a
lower explained deviance, it is argued that the GAM without the spatial
term more effectively addresses the stated research objectives and will
be discussed from here forward.

4.2. Flammability across vegetation, mean climate, and ignition density

The predominance of fire in grasslands and shrublandsmatches pre-
vious descriptions of fire occurrence across vegetation types in Hawaii
based on both fire perimeters and ignition points (Hawbaker et al.,
2017; Trauernicht et al., 2015b). The differences in burned area extents
are reflected in the relationship between fire probability and mean an-
nual rainfall, in which maximum probability is highest for grasslands
(Fig. 2b). Although forest fires comprise a relatively small proportion
of area burned, frequent grassland fires are linked to the contraction
and degradation of both native and non-native forest types in Hawaii
(Ellsworth et al., 2014; LaRosa et al., 2008). The peak in fire probability
along the rainfall gradient conforms to theoretical predictions that fire
occurrence is constrained by limited fuels at drier sites and excess fuel
moisture at wetter sites (Bradstock, 2010;Murphy et al., 2011). The dif-
ferences of this relationship for grasslands, shrublands, and forests in
Hawaii reflect the positive fire-vegetation feedbacks in ecosystems
dominated by fine fuels (i.e., the Grass-fire Cycle; Hughes et al., 1991;
D'Antonio and Vitousek, 1992) but also the negative fire feedbacks im-
posed by closed canopy forest (Beckage et al., 2009; Trauernicht et al.,
2012, 2016). Interestingly, these results provide empirical evidence in
support of a more recent hypothesis that the relationship between fire
and rainfall is differentially modulated by herbaceous and woody fuels
in tropical savannas (Kahiu and Hanan, 2018). Although a weaker pre-
dictor than annual rainfall variability, the different ‘sweet spots’ for
flammability across grassland, shrubland and woody vegetation types
created by the gradient in mean annual rainfall suggests that it is a
key indicator of fire risk over the landscape. This relationship also
lends weight to considering how projected spatial shifts in future
mean annual rainfall may alter flammability in the future.

Temperature is not typically used as a predictor of fire probability in
Hawaii due to its narrow range in daily and seasonal variability (Derek
Wroe, National Weather Service, pers. comm.) but has been included
in other analyses of fire occurrence in the tropics (Hoyos et al., 2017;
Van Beusekom et al., 2018). Mean annual temperature was included
in this analysis as it varies substantially across elevation in the study re-
gion, declining as elevation increases. The two peaks in fire probability
along the temperature gradient (Fig) may reflect vegetation patterns
asfire-pronegrasslands dominateswarmer, lowelevation siteswhereas
fire-prone shrublands are found at higher elevation (Fig. 1). As with
mean annual rainfall, the inclusion of mean annual temperature in the
top-ranked model also justifies examining the effects of projected tem-
perature change, which is increasing more rapidly at higher elevation
(Elison Timm, 2017; Giambelluca et al., 2008), on future landscape
flammability.

Although it seems counterintuitive, ignition density was not ex-
pected to be a strong predictor of fire probability. This is because 95%
of all wildfire ignitions across the main Hawaii Islands (c. 1000 per
year) result in fires b 4 ha (Trauernicht et al., 2015b). Therefore, the
burned area perimeters used to derive fire probability in this analysis
account for a small percentage of total wildfire ignitions. Ignition den-
sity was ultimately included as a predictor because it provides a
human dimension to landscape flammability. Human activity is esti-
mated to account for N98% of wildfire ignitions in Hawaii (Trauernicht
et al., 2015b). As with mean annual rainfall, there is a peak in fire prob-
ability along the ignition density gradient. The lower end indicates the
obvious relationship that the absence of ignitions limits fire activity.
Conversely, the low fire probability at high values of ignition density
likely reflects the effect of the built environment on constraining fire
size in populated areas where ignition densities are actually highest
(Archibald et al., 2009; Parisien et al., 2012).

4.3. Annual and future climate variability

It was expected that annual rainfall anomalies would contribute to
the high variability in annual area burned in the study region. Prior re-
search in Hawaii has linked increases in total area burned to drought
(Chu et al., 2002; Dolling et al., 2005) and the NationalWeather Service
‘Red Flag’ warning for elevated fire risk in Hawaii uses the Keetch-
Byram Drought Index along with relative humidity and wind speed.
Dry conditions the year of fire increased fire probability in the NW Big
Island by as much as 130%, with the strongest effect on shrublands,
and with peak flammability largely occurring within the same geo-
graphic space as under mean climatic conditions (Fig. 3a,b). More sur-
prising was how strongly wet conditions the year prior to fire
increased fire probability in grasslands (Fig. 2c). Excess rainfall the
year prior to fire increased peak fire probability as much as 225% and
this increase occurred across a wider expanse of landscape (Fig. 3g,h)
and into higher elevations (Fig. 6e) than under drought conditions the
year offire. That this effect is restricted to grasslandsmakes sensemech-
anistically given how responsive grass productivity, and hence fuel
loading, is to rainfall (Govender et al., 2006; Greenville et al., 2009). Sea-
sonally dry tropical savannas show similar patterns where the annual
area burned is positively correlated with wet season rainfall (Gill et al.,
2000; Van Der Werf et al., 2008). Interestingly, increases in annual
area burned in Hawaii have been attributed to El Niño due to drought
the following season (Chu et al., 2002). However, El Niño events in Ha-
waii are also associated with wetter than average summers prior to
drought events (Trauernicht, 2015). These results indicate this phe-
nomenon is also responsible for observed increases in the extent of
wildland fire. Wildland firefighters in Hawaii qualitatively consider
grassland fuel loading due to excess rain as a fire risk factor (Gollin
and Trauernicht, 2018), but this relationship has not been quantified
until now. Negative rainfall anomalies the year prior to fire reduced
fire probability more so than wet conditions the year of fire, especially
in grassland areas, suggesting fuel limitation may decrease fire risk the
following year. This also aligns with firefighter reports of reduced
fuels during longer term drought (Chief Eric Moller, US Army Fire and
Emergency Service, pers. comm.).

Both statistically and dynamically downscaled climate projections
generally agree that theNWBig Islandwill experience significant drying
and warming in the coming decades (Elison Timm et al., 2015; Zhang
et al., 2017). The resultant shift in peak flammability inland and upward
in elevation under all climate scenarios (Figs. 5 and 6) has critical
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implications for natural resource protection in Hawaii because high value,
remnant native ecosystems are more extensive at higher elevations
(Friday et al., 2015). This trend is especially troubling given the positive
feedbackbetweenfire andnonnative grasses and separate analyses indicat-
ing future increases in ecosystem invasibility in Hawaii, including of poten-
tial expansion of grass and shrub species known to be fuel hazards
(e.g., Melinis minutiflora and Leucaena leucocephala; Vorsino et al., 2014).
The extent of dry grassland and forest is projected to expand on Hawaii is-
land under climate change but it is uncertain how or whether climate
change alone will contribute to future forest conversion to more fire-
prone shrublands and grasslands (Fortini et al., 2017). However, the up-
ward shift flammability indicated by this research may accelerate future
conversions and/or contraction of forest biomes in Hawaii and increase
the vulnerability of remnant habitats (Fortini and Jacobi, 2018). Another
key finding is that the most dramatic spatial shifts in flammability are
projected to occur by middle of the 21st century. These results suggest
that changes in fire risk should anticipated by planners, land managers,
and emergency responders over the near-term (e.g., 2040–2060).

Conversely, the drying trend is predicted to reduce flammability at
lower elevation as fuel production becomes more limited under arid
conditions (Bradstock, 2010), whichmay reduce risk around residential
areas. Future population growth will likely increase ignition density
(Trauernicht et al., 2015b) but because most ignitions occur along
roads and communities, it is also possible that the shift in future flam-
mability upland and away from inhabited areas reduces the potential
for fire in the landscape. Yet despite the decreasing flammability in low-
land areas, the results indicate that fire probability will increase by as
much as 375% by the late 21st Century under the RCP 8.5 scenario
(Fig. 4e–h) and that the largest increases will occur at higher elevations
(i.e. 1000–2000 m) than current, peak landscape flammability (Fig. 6g,
h). It is important to note, however, that the range of annual climate var-
iability produces flammability predictions that are comparable future
conditions in terms of median and maximum increases in flammability
(Fig. 5). This implies that the worst fire years in recent history at least
provide a baseline from which to understand and anticipate future
risk, although the effects of rainfall anomalies under future conditions
was not assessed.

4.4. Applications

This modeling framework was explicitly developed in a decision-
making context in which landowners and landmanagers wanted to un-
derstand how projected changes in rainfall and proposed re-forestation
would alter fire risk and other landscape values at the watershed scale
(Bremer et al., 2018; Wada et al., 2017). Importantly, by capitalizing
on existing data and avoiding the assumptions ofmore complexmodels
of fire spread, this approach may be applied in other regions of the
world similarly underserved by fire science. In addition, relatively sim-
ple model assumptions can facilitate the communication of fire risk to
relevant decision-makers (Schmolke et al., 2010). In Hawaii, for in-
stance, predictive fire models developed for the US mainland are noto-
rious for poor performance, while investment in model calibration has
not kept pace with increasing impacts and risk of wildland fire
(Beavers et al., 1999; Benoit et al., 2009; Pierce et al., 2014). As a result,
agencies are often skeptical of relying onmodels and/or investing in the
technical capacity to implement fire modeling (Gollin and Trauernicht,
2018). The use of the habitat modeling approach and a logistic regres-
sion framework to model the likelihood of fire occurrence is not new
(Hoyos et al., 2017; Parisien and Moritz, 2009; Paritsis et al., 2013;
Preisler et al., 2004), but its application in the context of landscape flam-
mability in Hawaii holds promise in addressing these concerns.

5. Conclusion

By attributing fire occurrence across the landscape to available met-
rics of vegetation, mean and annual climatic conditions, and ignitions,
the approach presented here provides a way to quantify both the varia-
tion in and the degree towhich different factors contribute to landscape
flammability. As with any modeling approach, there is always room for
improvement. The application of remote sensing for firemapping inHa-
waii is increasing the temporal and spatial precision of fire perimeter
data (Hawbaker et al., 2017). These improvements and the release of
daily historical rainfall data for Hawaii (Longman et al., 2018) will en-
able future analyses to include climate data atfiner temporal resolutions
that will likely increase model performance. In addition, and partially in
response to the limitations of this analysis, satellite imagery is also being
used to develop annual maps of land cover to account for changes in
land cover/land use that may alter fire probability and provide continu-
ous (e.g., percent forest cover) values vs. discrete categories of land
cover typeswhich should improvemodel predictions (Lucas, 2017). De-
spite the limitations of the currentmodel to account formore rapidfluc-
tuations in fire risk caused by weather and ignition variability, the
framework provides a robust approach to assessing the influence of an-
nual variability relative tomean climatic conditions aswell as the spatial
patterns in current and future fire risk. These results not only provide a
novel perspective on fire regimes in Hawaii, but frame fire risk factors in
a temporal and spatial context that has practical value for prioritizing
and planning mitigation actions.
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