Removal of Invasive Fire-Prone Grasses to Increase Training Lands in the Pacific (Ansari et al, 2008)

This project was developed and carried out by SWCA Environmental Consultants (SWCA) to determine the effectiveness of three different methods in reducing the surface fuel loads in a guinea grass (Panicum maximum) dominated community, thereby reducing susceptibly to sustained fires. Three control treatments were tested including mechanical removal, herbicide application and grazing using cattle to reduce the fuel loads at Marine Corps Training Area Bellows (MCTAB), on the island of O‘ahu, Hawai‘i. Information on the cost of the various control treatments and their long-term effectiveness in maintaining reduced fuel loads would also benefit land and resource managers in the Pacific Islands where guinea grass and frequent fires are problematic.

Polipoli Fire Demonstrates Vulnerability of Maui ‘Alauahio (‘Elepaio, 2008)

Authors Hanna L. Mounce, Fern Duvall and Kirsty J. Swinnerton consider the effects of a massive brush fire in January 2007 on the endangered ‘Alauahio forest bird population in Polipoli including possible effects on foraging, breeding and reproduction.

Assessment of Livestock Grazing Impacts on Fuels and Cultural Resources at Mākua Military Reservation (Warren et al, 2007)

The project was developed by US Army Garrison (HI) primarily as a pilot study to assess the use of livestock to manage vegetation growth at Mākua Military Reservation (MMR) on the island of O‘ahu, Hawai‘i. The objective was to determine the feasibility of reducing grass height to a range of 3 to 19 inches, and thereby reduce the threat of catastrophic wildfires on these important training lands as well as adjacent non-military lands.

Effects of Prescribed Grazing and Burning Treatments on Fire Regimes in Alien Grass-dominated Wildland-Urban Interface Areas, Leeward Hawaii (Castillo and McAdams, 2006)

This project was designed to evaluate at a practical scale the effectiveness and costs of a range of fine fuels management treatments in West Hawai‘i Island. The study occurred along a major inland highway from which wildfires frequently originate. We applied four major treatments that included a control (no treatment), prescribed burning, cattle grazing, and a combined burning and grazing treatment. Aerially-applied herbicide was then applied to half of each of these primary treatments resulting in a total of eight unique treatment combinations.

Moisture availability and ecological restoration limit fine fuels and modelled wildfire intensity following non-native ungulate removal in Hawaii (Zhu et al, 2021)

We measured fuels (live and dead fuel loads, type, height and continuity) and modelled potential wildfire behaviour (flame height and rate of spread) inside and outside of 13 ungulate exclosures, three of which received active ecological restoration (e.g. planting of native shrubs and trees), across a 2,740 mm mean annual rainfall (MAR) gradient on the Island of Hawaii. Differences in fuel characteristics and modelled wildfire behaviour inside versus outside of ungulate exclosures were assessed using linear mixed effects analyses.

Filter

Topic

Resource Type

Region